Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer:
A. Identify the need, recognize limitations of current toothpaste containers, and then brainstorm ideas on how to improve the existing
Explanation:
To design an improved toothpaste container, we must identify the needs of the customer, one of the major need is to make the container attractive to the sight. This is the first thing that will prompt a customer to wanting to buy the product (The reflectance/appearance).
Then recognize the limitation of the current design, what needed change. This will help in determining what is needed to be included and what should be removed based on identified customers need.
The last step is to brainstorm ideas on how to improve the existing designs. Get ideas from other colleagues because there is a saying that two heads are better than one. This will help in coming to a reasonable conclusion on the new design after taking careful consideration of people's opinion.
Answer:
import pandas pd
def read_prices(tickers):
price_dict = {}
# Read ingthe ticker data for all the tickers
for ticker in tickers:
# Read data for one ticker using pandas.read_csv
# We assume no column names in csv file
ticker_data = pd.read_csv("./" + ticker + ".csv", names=['date', 'price', 'volume'])
# ticker_data is now a panda data frame
# Creating dictionary
# for the ticker
price_dict[ticker] = {}
for i in range(len(ticker_data)):
# Use pandas.iloc to access data
date = ticker_data.iloc[i]['date']
price = ticker_data.iloc[i]['price']
price_dict[ticker][date] = price
return price_dict
Answer:
Explanation:
Given that : -
The desirable limit is 500 mg / l , but
allowable upto 2000 mg / l.
The take volume is V = 160.000 m3
V = 160 , 000 x 103 l
The crainage gives 150 mg / l and lake has initialy 100 mg / l
Code of tpr frpm drawn = 150 x 60, 000 x 1000
Ci = 9000 kg / gr
Cl = 100 x 160,000 x 1000
Cl = 16, 000 kg
Since allowable limit = 2000 mg / l
Cn = ( 2000 x 160, 00 x 1000 )
= 320, 000 kg
so, each year the rate increases, by 9000 kg / yr
Read level = ( 320, 000 - 16,000 )
Li = 304, 000 kg
Tr=<u>304,000</u>
900
=33.77