It's an ionic bond! Potassium is a cation, or a metal with a positive charge, and fluoride is an anion, or a nonmetal with a negative charge.
A covalent bond is the bond between two nonmetals.
Hope this helped!
The answer to this question is:
<span>If the observed test value of a hypothesis test is outside of the established critical value(s), a researcher would __________.
</span><span>"Claim significant support for the hypothesis"
Hoped This Helped, </span><span>
Itsalishamariee
Your Welcome :)</span>
<h3><u>Answer;</u></h3>
Empirical formula = C₂H₃O
Molecular formula = C₁₄H₂₁O₇
<h3><u>Explanation</u>;</h3>
Empirical formula
Moles of;
Carbon = 55.8 /12 = 4.65 moles
Hydrogen = 7.04/ 1 = 7.04 moles
Oxygen = 37.16/ 16 = 2.3225 moles
We then get the mole ratio;
4.65/2.3225 = 2.0
7.04/2.3225 = 3.0
2.3225/2.3225 = 1.0
Therefore;
The empirical formula = <u>C₂H₃O</u>
Molecular formula;
(C2H3O)n = 301.35 g
(12 ×2 + 3× 1 + 16×1)n = 301.35
43n = 301.35
n = 7
Therefore;
Molecular formula = (C2H3O)7
<u> = C₁₄H₂₁O₇</u>
Answer:
Conversion factor;
Molar mass;
Avogadro's constant and molar mass
Explanation:
- Firstly, an intermediate step is to define the conversion factor that will be then used in a conversion technique called dimensional analysis in order to convert from one unit to another. An example of a conversion factor would be, for example, 1 L = 1000 mL, which can be manipulated as a fraction, either
or
; - Secondly, in order to convert mass to moles, we need to know the molar mass of a compound which has a units of g/mol (that is, it shows how many grams we have per 1 mole of substance.
- Thirdly, Avogadro's constant,
tells us that there is
number of molecules or atoms in 1 mole of substance. We need two conversion factors to convert the number of molecules to a mass: firstly, we need to convert the number of molecules into the number of moles using Avogadro's constant and then we need to use the molar mass to convert the moles obtained into mass.