Answer:
3. 75.0%
Explanation:
2 ClO2(g) + F2(g) → 2 FClO2(g)
First order with respect to ClO2 and F2.
This means the rate equation is given as;
Rate = k [ClO2][F2]
When the initial concentrations of ClO2 and F2 are equal?
Let's assume an initial value of 1 for both reactants, so rate equation is given as;
Rate = k * 1 * 1 = k
The rate after 25% of the F2 has reacted is what percent of the initial rate?
The concentration left of F2 is 75% ( 100% - 25%) = 0.75
Concentration of ClO2 remains 1.
So rate equation is given as;
Rate = k * 1 * 0.75 = 0.75 k
Comparing 0.75k and k.
This means our answer is;
3. 75.0%
Did the someone else have answers? If not then ask again in hopes of someone checking yours out :)
Answer:
25 mM Tris HCl and 0.1% w/v SDS
Explanation:
A <em>10X solution</em> is ten times more concentrated than a <em>1X solution</em>. The stock solution is generally more concentrated (10X) and for its use, a dilution is required. Thus, to prepare a buffer 1X from a 10X buffer, you have to perform a dilution in a factor of 10 (1 volume of 10X solution is taken and mixed with 9 volumes of water). In consequence, all the concentrations of the components are diluted 10 times. To calculate the final concentration of each component in the 1X solution, we simply divide the concentration into 10:
(250 mM Tris HCl)/10 = 25 mM Tris HCl
(1.92 M glycine)/10 = 0.192 M glycine
(1% w/v SDS)/10 = 0.1% w/v SDS
Therefore the final concentrations of Tris and SDS are 25 mM and 0.1% w/v, respectively.
We are given that alcohol is the solute, which leaves whatever is not alcohol as the solvent. 20.0% of the solution’s mass is alcohol, meaning 80.0% of the solutions mass is solvent. We are given its mass as 170 g, so just multiply 0.800*170 g = 136 g.