Answer:
0.00353J/g/°C
Explanation:
I will assume the temperature of the ice to be approximately 0°C.
Moreover, Heat of fusion of water is 6kJ
Amount of heat used to melt 5.3g of ice = 5.3 x 6 / 18
=1.767g°C
Therefore
1.767 = 25 x specific heat cap. x 200
Specific heat cap. = 1.767/(25x200)
= 0.00353J/g/°C
Answer:
Semiconductors are poor conductors at low temperatures, but their resistance decreases with increasing temperature.
Explanation:
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
The statement which best describes the electrical conductivity of metals and semiconductors is that semiconductors are poor conductors at low temperatures, but their resistance decreases with increasing temperature.
This ultimately implies that, semiconductors are typically an insulator (poor conductor) at low temperatures and a good conductor at high temperatures.
Additionally, conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
Answer:
B. a nuclear reactor core (1000°C)......
Answer:
lead ii nitrate is the answer
Answer:
WHAT DIAGRAM THX FOR POINTS THO
Explanation: