A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

It will be
E = mgh.
where h and g are constant thus
m can be written as 4/3πr^3*density
E = 4/3πr^3* density
E? = 4/3π(2R)^3* density
= 4/3π8r^3
thus the e will be 4/3π8r^3* density/4/3πr^3*density nd thus you get 8E ..
The Correct answer to number 1 is A or D
The correct answer to number 2 is C because transmission meaning is to travel.
PS. I think number 1 is D
The doppler effect is the increase or decrease in the frequency of sound, light, or other waves as the source and observer move toward or away from each other.
Answer:
1.62
Explanation:
comment section (credits to <em>charlizebarth</em>)+ correct on acellus