Answer:
a) 
b) the motorcycle travels 155 m
Explanation:
Let
, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

where:
is the speed of the motorcycle at time 2
is the velocity of the car (constant)
is the velocity of the car and the motorcycle at time 1
d is the distance between the car and the motorcycle at time 1
x is the distance traveled by the car between time 1 and time 2
Solving the system of equations:
![\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcar%26motorcycle%5C%5Cx%3Dv_0%5CDelta%7Bt%7D%26x%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%7D%29%20%5CDelta%7Bt%7D%5Cend%7Barray%7D%5Cright%5D)

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

Large bodies of water<span> such as oceans, seas, and large lakes </span>affect<span> the </span>climate<span> of an area. </span>Water<span> heats and cools more slowly than land. Thus, in the summer, the </span>coastal<span> regions </span>will<span> stay cooler and in winter warmer. A more moderate </span>climate<span> with a smaller temperature range </span>is<span> created.</span>
Gold is much heavier because it has a greater density, meaning the atoms are more closely packed. Also, the individual atoms are heavy as well making 1g of gold heavier than 1g of aluminum.
Answer:
<em>Thermal energy</em>
Explanation:
<u>Electrical Energy
</u>
The electrical energy has been found to be an excellent resource to power our modern lifestyle. It can be produced in several ways including hydroelectrical plants, thermal plants, nuclear plants, solar panels, among many others. Each one of them converts different types of energy into electrical energy.
When converting to electrical energy, some equipment is needed, like generators, transformers, cables, circuit breakers, and every kind of devices with specific functions to have a good and safe electrical service. Each device has an internal resistance that opposes the flow of current. The resistances produce thermal energy as a result of current flowing through them. It's not possible to avoid this waste of energy, electrical engineers do their best to use better materials and configurations to reduce the thermal waste to a minimum.