To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:


Here,
m = mass
v = Velocity
Our values are given as,


Replacing,


Therefore the mechanical energy lost due to friction acting on the runner is 907J
If you include the effects of falling through air, then you have to know the
shape, size, weight, and surface texture of the objects. You also have to
know the height from which they're dropped, and the temperature, pressure,
and humidity of the air. All these things make a difference in how they fall.
If you ignore the effects of falling through air, like build a giant metal tank
and pump all the air out of it, and ONLY talk about the effects of gravity, then
ALL OBJECTS accelerate at the same rate. If you drop two things from the
same height at the same time, then they both hit the ground at the same time,
traveling at the same speed, no matter what they are. They could be a piece of
tissue and a car !
There are several museums where they have a big glass pipe that you can
see through, and they pump the air out of the pipe and drop a feather and a
bowling ball from the top inside at the same time, and they both reach the
bottom together.
If gravity is the only force on an object, then all objects fall at the same rate.
Answer:
The wavelength will be 33.9 cm
Explanation:
Given;
frequency of the wave, F = 1200 Hz
Tension on the wire, T = 800 N
wavelength, λ = 39.1 cm

Where;
F is the frequency of the wave
T is tension on the string
μ is mass per unit length of the string
λ is wavelength

when the tension is decreased to 600 N, that is T₂ = 600 N

Therefore, the wavelength will be 33.9 cm
When atoms, the basic units of chemical elements, combine into chemical compounds, they form molecules. Organisms have many different kinds of molecules, from water and simple salts to complex molecules such as carbohydrates, fats, proteins, and deoxyribonucleic acid (DNA). One protein, called hemoglobin, carries oxygen in the blood and is what makes blood red. Hemoglobin contains atoms of six different elements—carbon, hydrogen, oxygen, nitrogen, sulfur, and iron.