The new volume will be 1379 mL.
Explanation:
As per Boyle's law, the product of initial volume and initial pressure of any gas molecule is equal to the product of final volume and final pressure of those molecules.
So here the initial volume is 650 ml and the initial pressure is 3.50 atm. As the temperature is said to be constant, then this system will be obeying Boyle's law. So, the final pressure is given as 1.65 atm. As there is a reduction in the pressure, the volume of the gas is tend to get expanded.

So, 

So, the new volume of the gas on reduction in pressure is 1379 mL.
A free-radical substitution reaction is likely to be responsible for the observations. The reaction mechanism of a reaction like this can be grouped into three phases:
- Initiation; the "light" on the mixture deliver sufficient amount of energy such that the halogen molecules undergo homologous fission. It typically takes ultraviolet radiation to initiate fissions of the bonds.
- Propagation; free radicals react with molecules to produce new free radicals and molecules.
- Termination; two free radicals combine and form covalent bonds to produce stable molecules. Note that it is possible for two carbon-containing free-radicals to combine, leading to the production of trace amounts of long carbon chains in the product.
Initiation

where the big black dot indicates unpaired electrons attached to the atom.
Propagation






Termination

Answer:
Gina Should Put Rubber Tires Under The Synthetic Category
Gina Should Put Starch Under The Natural Category
Explanation:
Edge 2020
Answer:
if you did it would probably make it bigger...
Explanation:
:)
Use PV = mRT/M and solve for R. R = PVM/RT. Since you have the same gas under two sets of conditions then you can write
<span>P1V1M1/m1T1 = P2V2M2/m2T2 </span>
<span>Since P, M and T are constant, the equation becomes </span>
<span>V1/m1 = V2/m2 </span>
<span>Now plug in your values and solve for V2</span>