A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
So we want to explain the effects of time dilation. In theory of relativity time dilation is the difference of elapsed time between two events when measured by two observers who are moving relatively to each other. A clock of an observer that is standing still in an inertial frame of reference is going to measure a different time of an event than the clock of an observer that is moving with some velocity with respect to the inertial reference frame that is not moving. In a nutshell, the moving clock is ticking slower than the clock that is standing still.
The maximum height to which the ball attain before falling back down is 1147.96 m
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Initial velocity (u) = 150 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h) =?
<h3>How to determine the maximum height </h3>
The maximum height reached by the ball can be obtained as illustrated below:
v² = u² – 2gh (since the ball is going against gravity)
0² = 150² – (2 × 9.8 × h)
0 = 22500 – 19.6h
Collect like terms
0 – 22500 = –19.6h
–22500 = –19.6h
Divide both side by –19.6
h = –22500 / –19.6
h = 1147.96 m
Thus, the maximum height reached by the ball is 1147.96 m
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1