1askjjjohikjgnvrfntttkmvvvvvvvfdrtgfgfgfgffdxxsd
Answer:
the ball travelled approximately 60 m towards north before stopping
Explanation:
Given the data in the question;
First course :
= 0.75 m/s²,
= 20 m,
= 10 m/s
now, form the third equation of motion;
v² = u² + 2as
we substitute
² = (10)² + (2 × 0.75 × 20)
² = 100 + 30
² = 130
= √130
= 11.4 m/s
for the Second Course:
= 11.4 m/s,
= -1.15 m/s²,
= 0
Also, form the third equation of motion;
v² = u² + 2as
we substitute
0² = (11.4)² + (2 × (-1.15) ×
)
0 = 129.96 - 2.3
2.3
= 129.96
= 129.96 / 2.3
= 56.5 m
so;
|d| = √(
² +
² )
we substitute
|d| = √( (20)² + (56.5)² )
|d| = √( 400 + 3192.25 )
|d| = √( 3592.25 )
|d| = 59.9 m ≈ 60 m
Therefore, the ball travelled approximately 60 m towards north before stopping
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
Frequency is the vibration of noise and the vibration determines the pitch, which we depend on to be a pitch or frequency we can hear. If it's too high or too low our ears can't hear it
Answer:
I don't know why you are asking me?