Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Answer:
4 m/s
Explanation:
KE =
Velocity of balloon will be 4 m/s.
!! Hope It Helps !!
Answer:
A 60 kg person standing on a platform at the surface of Saturn and they jumped, they would have to push with a force greater than 540 N
Explanation:
The gravitational attraction between an object on the surface of a planet and the planet is given by the weight of the object
Therefore the force needed to be applied for an object to lift off the surface of a planet = The weight of the object
The weight of the object on the surface of a planet = m × g
Where;
m = The mass of the object
g = The strength of gravity on the planet's surface in N/kg
The given parameters are;
The mass of the person standing on a platform at the surface of Saturn, m = 60 kg
The strength of gravity on the surface of Saturn = 9 N/kg
Therefore, we have;
The weight of the person = The force greater than which the person would have to push on the surface of Saturn so as to Jump = The weight of the person on the surface of Saturn = 60 kg × 9 N/kg = 540 N
Therefore, for a 60 kg person standing on a platform at the surface of Saturn and they jumped, they would have to push with a force greater than 540 N.
Explanation:
The strength of the gravitational field is known as gravitational field intensity. It is the gravitational force acting on a unit test mass.