Answer:
True
Explanation:
The CNC is the primary interface between the machine operator and the machine.
Answer:
a)
, b) ![\dot Q_{H} = 26.875\,kW](https://tex.z-dn.net/?f=%5Cdot%20Q_%7BH%7D%20%3D%2026.875%5C%2CkW)
Explanation:
a) The Coefficient of Performance of the Carnot Heat Pump is:
![COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}](https://tex.z-dn.net/?f=COP_%7BHP%7D%20%3D%20%5Cfrac%7BT_%7BH%7D%7D%7BT_%7BH%7D-T_%7BL%7D%7D)
After some algebraic handling, the temperature of the cold reservoir is determined:
![T_{H}-T_{L} = \frac{T_{H}}{COP_{HP}}](https://tex.z-dn.net/?f=T_%7BH%7D-T_%7BL%7D%20%3D%20%5Cfrac%7BT_%7BH%7D%7D%7BCOP_%7BHP%7D%7D)
![T_{L} = T_{H}\cdot \left(1-\frac{1}{COP_{HP}} \right)](https://tex.z-dn.net/?f=T_%7BL%7D%20%3D%20T_%7BH%7D%5Ccdot%20%5Cleft%281-%5Cfrac%7B1%7D%7BCOP_%7BHP%7D%7D%20%20%5Cright%29)
![T_{L} = (297.15\,K)\cdot \left(1-\frac{1}{12.5}\right)](https://tex.z-dn.net/?f=T_%7BL%7D%20%3D%20%28297.15%5C%2CK%29%5Ccdot%20%5Cleft%281-%5Cfrac%7B1%7D%7B12.5%7D%5Cright%29)
![T_{L} = 273.378\,K\,(0.228\,^{\textdegree}C)](https://tex.z-dn.net/?f=T_%7BL%7D%20%3D%20273.378%5C%2CK%5C%2C%280.228%5C%2C%5E%7B%5Ctextdegree%7DC%29)
b) The heating load provided by the heat pump is:
![\dot Q_{H} = COP_{HP}\cdot \dot W](https://tex.z-dn.net/?f=%5Cdot%20Q_%7BH%7D%20%3D%20COP_%7BHP%7D%5Ccdot%20%5Cdot%20W)
![\dot Q_{H} = (12.5)\cdot (2.15\,kW)](https://tex.z-dn.net/?f=%5Cdot%20Q_%7BH%7D%20%3D%20%2812.5%29%5Ccdot%20%282.15%5C%2CkW%29)
![\dot Q_{H} = 26.875\,kW](https://tex.z-dn.net/?f=%5Cdot%20Q_%7BH%7D%20%3D%2026.875%5C%2CkW)
Answer:
hello im new trying to get points
Explanation:
Answer:
a) P = 86720 N
b) L = 131.2983 mm
Explanation:
σ = 271 MPa = 271*10⁶ Pa
E = 119 GPa = 119*10⁹ Pa
A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²
a) P = ?
We can apply the equation
σ = P / A ⇒ P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N
b) L₀ = 131 mm = 0.131 m
We can get ΔL applying the following formula (Hooke's Law):
ΔL = (P*L₀) / (A*E) ⇒ ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)
⇒ ΔL = 2.9832*10⁻⁴ m = 0.2983 mm
Finally we obtain
L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm
This statement is b which is true: hope this helped