Answer: I = 3.6 m3
(C)
Explanation:
moment of inertia for spherically shaped object around it's center is given as
I = (2/5) mr²
substituting the r = 3m²
I = (2/5)*(9) m3
I = 3.6 m3
Answer:
R = 73.25 m
Explanation:
We have,
Initial speed of the ball is 27 m/s
It is projected at an angle of 40 degrees
The maximum range of the ball is given by :

Plugging all the values we get :

So, the maximum range of the ball is 73.25 m
Given that,
radius, r = 4.23 x 10∧7 m
Period, T = ?
Since, we know that,
In a geosynchronous satellite, period is equal to the period of earth that is 24 hrs.
Therefore, Time period is equal to 24 hours.
Answer:
a) N = 343 [N]
Explanation:
We must remember Newton's third law, which tells us that the force acting on a body is equal to the normal reaction force of equal magnitude but acting in the opposite direction.

where:
m = mass = 35 [kg]
g = gravity acceleration = 9.81 [m/s²]
![N = 35*9.8\\N= 343 [N]](https://tex.z-dn.net/?f=N%20%3D%2035%2A9.8%5C%5CN%3D%20343%20%5BN%5D)