Answer:
The comparisons are;
The height of the bromine in the 50 ml beaker will be twice that of the 100 ml beaker
The measurement of the volume with the 50 ml beaker will be more accurate than the measurement taken with the 100 ml beaker, because the differences in the height of the bromine in the 50 ml beaker is more obvious than the differences measured with the 100 ml beaker.
The actual volume of bromine in both beakers will be equivalent
Explanation:
The properties of a liquid are;
1) The volume of a liquid is relatively fixed at conditions that are suitable for it to remain in the liquid state compared to the volume occupied by a gas
2) A liquid will assume the shape of a container in which it is placed
3) The surface of a liquid in a container is flat due in order that the attractive forces between the molecules of the liquid at the surface and inside the body of the liquid should be in equilibrium
Therefore, given that the volume of the Bromine is measured in 50 ml beaker and a 100 ml beaker, there will be differences in the measured height of the same volume of bromine in each beaker.
I think it is kinetic friction not the best at physics
Answer:
10N right
Explanation:
First, we need to find the base of the triangle to find the force acting on the right of the object.
- We have been given the hypotenuse and we need to find the adjacent, so we are using cos
- SOH, CAH, TOA
- cos(θ) = adjacent ÷ hypotenuse
Next, sub in the values (we don't know the adjacent so i've called it x):
To find x, we need to multiply both sides by 60
Now we know all the forces, we can work out the net force:
- Both of the 40N cancel out because they are opposite forces
- The force on the right of the object is 10N stronger than the force on the left (30N - 20N), so the object would move to the right