Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
F = m*a
5000 = 2000 * x
5000/2000 = x
2.5 = x
2.5m/s^2 = a
2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
A.gold is the answer. As it's density is 19.32 grams per cubic centimeter which is lot more than the other substances.