1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
3 years ago
14

Rope BCA passes through a pulley at point C and supports a crate at point A. Rope segment CD supports the pulley and is attached

to an eye anchor embedded in a wall. Rope segment BC creates an angle of ϕ = 70.0 ∘ with the floor and rope segment CD creates an angle θ with the horizontal. If both ropes BCA and CD can support a maximum tensile force Tmax = 175 lb , what is the maximum weight Wmax of the crate that the system can support? What is the angle θ required for equilibrium? Express your answers numerically in pounds and degrees to three significant figures separated by a comma. slader
Engineering
1 answer:
djverab [1.8K]3 years ago
6 0

Answer:

363 pounds 32 degrees

Explanation:

Express your answers numerically in pounds and degrees to three significant figures separated by a comma. slader

You might be interested in
Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA
otez555 [7]

Answer:

see the explanation

Explanation:

/* C Program to construct Deterministic Finite Automaton */

#include <stdio.h>

#include <DFA.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <stdbool.h>

struct node{

struct node *initialStateID0;

struct node *presentStateID1;

};

printf("Please enter the total number of states:");

scanf("%d",&count);

//To create the Deterministic Finite Automata

DFA* create_dfa DFA(){

  q=(struct node *)malloc(sizeof(struct node)*count);

  dfa->initialStateID = -1;

  dfa->presentStateID = -1;

  dfa->totalNumOfStates = 0;

  return dfa;

}

//To make the next transition

void NextTransition(DFA* dfa, char c)

{

  int tID;

  for (tID = 0; tID < pPresentState->numOfTransitions; tID++){

       if (pPresentState->transitions[tID].condition(c))

      {

          dfa->presentStateID = pPresentState->transitions[tID].toStateID;

          return;

      }

  }

  dfa->presentStateID = pPresentState->defaultToStateID;

}

//To Add the state to DFA by using number of states

void State_add (DFA* pDFA, DFAState* newState)

{  

  newState->ID = pDFA->numOfStates;

  pDFA->states[pDFA->numOfStates] = newState;

  pDFA->numOfStates++;

}

void transition_Add (DFA* dfa, int fromStateID, int(*condition)(char), int toStateID)

{

  DFAState* state = dfa->states[fromStateID];

  state->transitions[state->numOfTransitions].toStateID = toStateID;

  state->numOfTransitions++;

}

void reset(DFA* dfa)

{

  dfa->presentStateID = dfa->initialStateID;

}

5 0
3 years ago
A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the
Margaret [11]

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

$ T_{in}  = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p}  + T_{out}$

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

C_p = 520 \:\: J/kg.K

So, the inlet temperature of argon is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520}  + 300$

$ T_{in}  = \frac{1}{2} \times 119  + 300$

$ T_{in}  = 360K $

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

C_p = 5193 \:\: J/kg.K

So, the inlet temperature of helium is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193}  + 300$

$ T_{in}  = \frac{1}{2} \times 12  + 300$

$ T_{in}  = 306K $

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

C_p = 1039 \:\: J/kg.K

So, the inlet temperature of nitrogen is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039}  + 300$

$ T_{in}  = \frac{1}{2} \times 60  + 300$

$ T_{in}  = 330K $

Note: Answers are rounded to the nearest whole numbers.

5 0
3 years ago
The air contained in a room loses heat to the surroundings at a rate of 60 kJ/min while work is supplied to the room by computer
charle [14.2K]

Answer:

The net amount of energy change of the air in the room during a 10-min period is 120 KJ.

Explanation:

Given that

Heat loss from room (Q)= 60 KJ/min

Work supplied to the room(W) = 1.2 KW = 1.2 KJ/s

We know that  1 W = 1 J/s

Sign convention for heat and work:

1. If heat is added to the system then it is taken as positive and if heat is rejected from the system then it is taken as negative.

2. If work is done by the system then it is taken as positive and if work is done on the system then it is taken as negative.

So

Q = -60 KJ/min

In 10 min Q = -600 KJ

W = -1.2 KJ/s

We know that

1 min = 60 s

10 min = 600 s

So   W = -1.2 x 600 KJ

W = -720 KJ

WE know that ,first law of thermodynamics

Q = W + ΔU

-600  =  - 720 + ΔU

ΔU = 120 KJ

The net amount of energy change of the air in the room during a 10-min period is 120 KJ.

4 0
3 years ago
Read 2 more answers
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
Two particles have a mass of 7.8 kg and 11.4 kg , respectively. A. If they are 800 mm apart, determine the force of gravity acti
aleksley [76]

Answer:

A) About 9.273 \times 10^{-9} newtons

B) 76.518 newtons

C) 111.834 newtons

Explanation:

A) F_g=\dfrac{GM_1M_2}{r^2} , where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

F_g=\dfrac{(6.67408 \times 10^{-11})(7.8)(11.4)}{(0.8)^2}\approx 9.273 \times 10^{-9}

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.

C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.

Hope this helps!

3 0
3 years ago
Other questions:
  • How an AK 47 gun was works​
    14·1 answer
  • Which of the following correctly explains why it would be beneficial for an engineer to become a member of the Leadership in Ene
    15·2 answers
  • A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200oC, 1 bar. During an interval of 10 minu
    8·1 answer
  • ما جمع كلمة القوة؟help please
    10·1 answer
  • Test if a number grade is an A (greater than or equal to 90). If so, print "Great!". Hint: Grades may be decimals. Sample Run En
    15·1 answer
  • Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar, 378C with a mass flow rate of 1000 kg/h and exi
    8·1 answer
  • When nondeterminism results from multiple threads attempting to access a shared resource such as a shared variable or a shared f
    9·1 answer
  • A coil having a resistance of 10 ohms and an inductance of 4 H is switched across a 20W dc source. Calculate (a) time required b
    9·1 answer
  • During welding in the vertical position, the torch angle can be varied to control sagging.
    9·1 answer
  • the maximum load that a hori-zontal beam can carry is directly proportional to its width. if a beam 1.5 inches wide can support
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!