1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
13

A positively charged object is brought near but not in contact with the top of an uncharged gold leaf electroscope. The experime

nter then briefly touches the electroscope with a finger. The finger is removed, followed by the removal of the positively charged object. What happens to the leaves of the electroscope when a negative charge is now brought near but not in contact with the top of the electroscope?
Physics
1 answer:
Olin [163]3 years ago
7 0

Answer:

The leaves of the electroscope move further apart.

Explanation:

This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.

Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.

So, the leaves move further apart.

You might be interested in
Now assume that Eq. 6-14 gives the magnitude of the air drag force on the typical 20 kg stone, which presents to the wind a vert
chubhunter [2.5K]

Answer:

362.41 km/h

Explanation:

F = Force

m = Mass = 84 kg

g = Acceleration due to gravity = 9.81 m/s²

C = Drag coefficient = 0.8

ρ = Density of air = 1.21 kg/m³

A = Surface area = 0.04 m²

v = Terminal velocity

F = ma

F=\frac{1}{2}\rho CAv^2\\\Rightarrow mg=\frac{1}{2}\rho CAv^2\\\Rightarrow v=\sqrt{2\frac{mg}{\rho CA}}\\\Rightarrow v=\sqrt{2\frac{20\times 9.81}{1.21\times 0.8\times 0.04}}\\\Rightarrow v=100.66924\ m/s

Converting to km/h

100.66924\times 3.6=362.41\ km/h

The terminal velocity of the stone is 362.41 km/h

5 0
3 years ago
Read 2 more answers
A student is getting ready to go on a bike ride, but her bike’s back tire is flat! She connects a pump to the valve and adds air
Tems11 [23]

Answer: The answer is B. Higher than.

Explanation:

3 0
2 years ago
Read 2 more answers
14. Which one of the following pictures shows the object that is the most dense? *
rewona [7]

Answer:

B

Explanation:

Density is about how closely compact molecules are. (^-^)

5 0
2 years ago
Early humans used rocks as tools to make other things as well as to construct buildings. Why was it better for them to use rocks
babymother [125]
Wood isn't as tough as rock. Wood also breaks down in weather and cracks under pressure. Plus rocks were more accessible.
6 0
3 years ago
Read 2 more answers
A layer of oil (n = 1.38) floats on an unknown liquid. A ray of light originates in the oil and passes into the unknown liquid.
Vinil7 [7]

Answer:

Refractive index of unknown liquid = 1.56

Explanation:

Using Snell's law as:

n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}

Where,  

{\theta_i}  is the angle of incidence  ( 65.0° )

{\theta_r} is the angle of refraction  ( 53.0° )

{n_r} is the refractive index of the refraction medium  (unknown liquid, n=?)

{n_i} is the refractive index of the incidence medium (oil, n=1.38)

Hence,  

1.38\times {sin65.0^0}={n_r}\times{sin53.0^0}

Solving for {n_r},

Refractive index of unknown liquid = 1.56

4 0
3 years ago
Other questions:
  • Boxers attempt to move with an opponent's punch when it is thrown. In other words, a boxer moves in the same direction as their
    9·2 answers
  • Complete this sentence. The solubility of a sample will ____________ when the size of the sample increases.
    5·1 answer
  • A sine wave with an rms value of 10.6 v is riding on a dc level of 24 v. what are the maxi- mum and minimum values of the result
    6·1 answer
  • What was the purpose of the 1996 Columbia NASA launch?​
    15·1 answer
  • Ual Learning 2.0
    12·1 answer
  • If a positively charged body is moved against an electric field it will gain?
    11·1 answer
  • Mechanical energy is a term that is used to describe
    11·2 answers
  • As the result of a thermal inversion the prevailing air temperature profile increases 1°C/100m above the ground level. To what m
    8·1 answer
  • When the direction of acceleration is opposite to the direction of velocity
    8·2 answers
  • Science, who ever answers this will get a brainlest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!