The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Inorganic molecules are composed of other elements. They can contain hydrogen or carbon, but if they have both, they are organic.
Spontaneous at low temperatures.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Galvanization is defined as the process in which a protective layer of zinc is applied to iron or steel to prevent the metal from rusting.
Zinc prevents the oxidation of iron and acts as a reducing agent in the process.
The half reaction for the process follows:
<u>Oxidation half reaction:</u> 
<u>Reduction half reaction:</u> 
Net chemical equation: 
Hence, the balanced chemical equation is written above.