What measures we can't answer without the measures
Desired operation: A + B = C; {A,B,C) are vector quantities.
<span>Issue: {A,B} contain error (measurement or otherwise) </span>
<span>Objective: estimate the error in the vector sum. </span>
<span>Let A = u + du; where u is the nominal value of A and du is the error in A </span>
<span>Let B = v + dv; where v is the nominal value of B and dv is the error in B </span>
<span>Let C = w + dw; where w is the nominal value of C and dw is the error in C [the objective] </span>
<span>C = A + B </span>
<span>w + dw = (u + du) + (v + dv) </span>
<span>w + dw = (u + v) + (du + dv) </span>
<span>w = u+v; dw = du + dv </span>
<span>The error associated with w is the vector sum of the errors associated with the measured quantities (u,v)</span>
Answer:
I would say the net force acting on the car is in the opposite direction of the car's motion is correct
Answer
given,
vertical speed of stone,v = 12 m/s
height of the cliff = 70 m
a) time taken by the stone to reach at the bottom of the cliff
We know that,
S = u t + 1/2 a t²
- 70 = 12 t - 0.5 x 9.8 t²
4.9 t² - 12 t - 70 = 0
solving the equation
t = 5.2 s (neglecting the negative value)
b) again using equation of motion
v = u + a t
v = 12 - 9.8 x 5.2
v = -38.96 m/s
ignoring the negative sign
magnitude of velocity is equal to 38.96 m/s
c) total distance travel by the stone
vertical distance covered by the stone
v² = u² + 2 g h
0 = 12² - 2 x 9.8 x h
h = 7.34 m
to reach the stone to the same level distance travel be doubled.
Total distance travel by the stone
H = h + h + 70
H = 7.34 x 2 + 70
H = 84.7 m.
Answer:
The answer is:
150 m
Explanation:
find acceleration first.
Vf = at + Vi
20 = a(15) + 0
a = 1.33m/s^2
x = 1/2at^2
x = 1/2 (1.33) (15)^2
x = 149.625m or round it to 150m
hope this helps