1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
4 years ago
11

"A pendulum is pulled back from its equilibrium (center) position and then released. When the pendulum bob is halfway between th

e high point and the low point in its swing, is the total energy kinetic energy, potential energy, or both
Physics
1 answer:
kumpel [21]4 years ago
3 0

Answer:

Option C, The total energy consists of half the original potential energy and half of the original potential energy converted to kinetic energy.

Explanation:

Complete question

A pendulum is pulled back from its equilibrium (center) position and then released. When the pendulum bob is halfway between the high point and the low point in its swing, is the total energy kinetic energy, potential energy, or both? Explain.

The total energy is kinetic energy only.

The total energy is potential energy only.

The total energy consists of half the original potential energy and half of the original potential energy converted to kinetic energy.

The total energy consists of one-fourth the original potential energy and three-fourths of the original potential energy converted to kinetic energy.

Solution

Total energy is the sum of kinetic energy and potential energy and as a pendulum moves back and forth, there is continuous transformation of energy from one form to the other form. i.e from kinetic energy to potential energy and vice versa.  

When the pendulum is released from some position, the potential energy  in it start converting into kinetic energy with the increase in speed of motion of pendulum bob

Hence, option C is correct

You might be interested in
The three forces acting on a hot-air balloon that is moving vertically are its weight, the force due to air resistance and the u
irinina [24]

Explanation :

The forces acting on hot- air balloon are:

Weight, (W)

Force due to air resistance, (F)

Upthrust force, (U)

Its weight W is acting in downward direction. The upthrust force U acts in upward direction. When the balloon is moving upward, the air resistance is in downward and vice versa.

In this case, the hot-air balloon descends vertically at constant speed.

so, a=0

and F=ma=0

so, W = F + U ....................(1)

when it is ascending let the weight that it is releasing is R, so

(W-R) + F = U..........(2)

solving equation (1) and (2)

(W-R)+F=W-F

R=2F            

2F is the weight of material that must be released from the balloon so that it ascends vertically at the same constant speed.

7 0
3 years ago
Read 2 more answers
The acceleration of a cart rolling down a ramp depends on __________.
zmey [24]

The angle that the cart rolls with the horizontal. The closer the ramp gets to 90 degrees the faster the cart will accelerate.

8 0
3 years ago
A bird is about 6.26.2 in.​ long, with a​ thin, dark bill and a​ wide, white wing stripe. If the bird can fly 9292 mi with the w
Trava [24]

Answer:

209 mph

Explanation:

V = Speed of bird in still air

v = Speed of wind = 44 mph

Consider the motion of the bird with the wind

D_{1} = distance traveled with the wind = 9292 mi

t_{1} = time taken to travel the distance with wind

Time taken to travel the distance with wind is given as

t_{1} = \frac{D_{1}}{V + v}

t_{1} = \frac{9292}{V + 44}                              eq-1

Consider the motion of the bird with the wind

D_{2} = distance traveled against the wind = 6060 mi

t_{2} = time taken to travel the distance against wind

Time taken to travel the distance against wind is given as

t_{2} = \frac{D_{2}}{V + v}

t_{2} = \frac{6060}{V - 44}                              eq-2

As per the question,

Time taken with the wind = Time taken against the wind

t_{1} = t_{2}

\frac{9292}{V + 44} = \frac{6060}{V - 44}

(9292) (V - 44) = (6060) (V + 44)

9292V - 408848 = 6060V + 266640

3232V = 675488

V = 209 mph

5 0
3 years ago
Answer and explanation please!! ​
expeople1 [14]

Answer:

Option 3

Explanation:

O Option C is NEGATIVELY CHARGED, meaning it has GAINED ELECTRONS resulting in a GREATER number of ELECTRONS than PROTONS.

8 0
3 years ago
Read 2 more answers
If the swimmer starts at rest, slides without friction, and descends through a vertical height of 2.41 m
AveGali [126]

Answer:

6.88 m/s

Explanation:

The Conservation of Energy states that:

Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy

So we can write

mgh_{i}+\frac{1}{2}mv_{i} ^{2}=mgh_{f}+\frac{1}{2}mv_{f} ^{2}

We can cancel the common factor of m which leaves us with

gh_{i}+\frac{1}{2}v_{i} ^{2}=gh_{f}+\frac{1}{2}v_{f} ^{2}

Lets solve for v_f

gh_{i}+\frac{v_{i} ^{2}}{2}=gh_{f}+\frac{v_{f} ^{2}}{2}

Subtract gh_f from both sides of the equation.

gh_{i}+\frac{v_{i} ^{2}}{2}-gh_{f}=\frac{v_{f} ^{2}}{2}

Multiply both sides of the equation by 2.

2(gh_{i}+\frac{v_{i} ^{2}}{2}-gh_{f})={v_{f} ^{2}

Simplify the left side.

Apply the distributive property.

2(gh_{i})+2\frac{v_{i} ^{2}}{2}+2(-gh_{f})={v_{f} ^{2}

Cancel the common factor of 2.

2gh_{i}+v_{i} ^{2}-2gh_{f}={v_{f} ^{2}

Take the square root of both sides of the equation to eliminate the exponent on the right side.

{v_{f}=\sqrt{2gh_{i}+v_{i} ^{2}-2gh_{f}}

We are given g,v_{i},h_{i},h_{f}.

We can now solve for the final velocity.

{v_{f}=\sqrt{(2*9.81*2.41)+(0^{2})-(2*9.81*0)

Anything multiplied by 0 is 0.

{v_{f}=\sqrt{2*9.81*2.41

{v_{f}=\sqrt{47.2842

v_f=6.88

7 0
1 year ago
Other questions:
  • Which of the following properties could be described as a force that pushes charges along?
    8·1 answer
  • PLEASE NEED HELP What is the net force acting on the race car in the picture: Question 1 options: 10 N to the right 3 N to the l
    13·1 answer
  • Drawing conclusions.
    13·2 answers
  • Fire trucks have the word FIRE written two ways, as seen here, on the front of the truck. Why is that?
    10·2 answers
  • What are the three most influential variables that affect electrical force?
    13·1 answer
  • In the design of wall and column forms, the two most important factors are which of the following? a. rate of placement of the c
    7·1 answer
  • How many meters did the car go in the first 4 seconds?​
    10·1 answer
  • Please help I'm having a mental breakdown
    7·1 answer
  • An ultrasound machine is being used to try to identify potential kidney stones. The machine is working properly and no kidney st
    11·2 answers
  • A 50-ω resistor is connected to a 9.0 V battery. How much thermal energy is produced in 7.5 minutes?1.2 * 10^2 J1.3 * 10^3 J3.0
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!