Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.
Answer:
A
Explanation:
Nitrogen is an atom made up of 7 electrons.
To draw the orbital energy level diagram, let us write the orbital notation of the atom;
7 electrons of Nitrogen:
1s² 2s² 2p³
So,
The orbital notation diagram is :
1s² 2s² 2p³
↑↓ ↑↓ ↑↑↑
126 grams of H2O is formed.
Explanation:
Data given:
volume of the gas = 88 Liters
pressure = 720 mm Hg or 0.947 atm
temperature T = 22 Degrees or 295.15 K
R = 0.08021 atm L/mole K
n =?
The formula is used is of ideal gas law to know the number of moles of CH4 undergoing combustion.
PV = nRT
n = 
putting the values in the equation
= 0.947 X 88/ 0.08021 X 295.15
n = 3.5 moles
balanced reaction for combustion of methane
CH4 + O2 ⇒ CO2 + 2H20
1 mole of CH4 undergoes combustion to form 2 moles of water
3.5 moles will give x moles of water
2/1 = x/3.5
x = 7 moles of water (atomic mass of water = 18 gram/mole)
mass = atomic mass x number of moles
mass = 18 x 7
=126 grams of water is formed.