<span>A 67.0 kg crate is being raised by means of a rope. Its upward acceleration is 3.50 m/s2. What is the force exerted by the rope on the crate?
</span>Newton's Second Law<span> of Motion states, “The force acting on an object is equal to the mass of that object times its acceleration.” We calculate as follows:
</span>
F = ma = 67.0 kg (3.50 m/s^2) = 234.5 J
For how long? Or is it just speed ??
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.
Answer:
B. most electrical devices in a house are on parallel circuits.
Explanation:
Household wiring is a mostly a series of parallel circuits. Otherwise, if you were to turn your oven (or television, or your computer, or any other appliance off, the rest of your home's electrical system will cease to operate.
Therefore, they are in parallel circuits.
IT IS EASIER TO CLIMB A SLANTED SLOPE