1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
7

The current theory of the structure of the

Physics
1 answer:
IRISSAK [1]3 years ago
3 0

1) The mass of the continent is 3.3\cdot 10^{21} kg

2) The kinetic energy of the continent is 624 J

3) The speed of the jogger must be 4 m/s

Explanation:

1)

We start by finding the volume of the continent. We have:

L = 5850 km = 5.85\cdot 10^6 m is the side

t = 35 km = 3.5\cdot 10^4 m is the depth

So the volume is

V=L^2 t = (5.85\cdot 10^6)^2 (3.5\cdot 10^4)=1.20\cdot 10^{18} m^3

We also know that its density is

d=2750 kg/m^3

Therefore, we can find the mass by multiplying volume by density:

m=dV=(2750)(1.20\cdot 10^{18})=3.3\cdot 10^{21} kg

2)

The kinetic energy of the continent is given by:

K=\frac{1}{2}mv^2

where

m=3.3\cdot 10^{21} kg is its mass

v = 3.2 cm/year is the speed

We have to convert the speed into m/s. We have:

3.2 cm = 0.032 m

1 year = 1(365)(24)(60)(60)=3.15\cdot 10^7 s

So, the speed is:

v=\frac{0.032 m}{3.15 \cdot 10^7 s}=1.02\cdot 10^{-9} m/s

So, we can now find the kinetic energy:

K=\frac{1}{2}(1.20\cdot 10^{21})(1.02\cdot 10^{-9})^2=624 J

3)

Here we have a jogger of mass

m = 78 kg

And the jogger has the same kinetic energy of the continent, so

K = 624 J

The kinetic energy of the jogger is given by

K=\frac{1}{2}mv^2

where v is the speed of the jogger.

Solving for v, we find the speed that the jogger must have:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(624)}{78}}=4 m/s

Learn more about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

You might be interested in
(a) Write an equation describing a sinusoidal transverse wave traveling on a cord in the positive of a y axis with an angular wa
Vedmedyk [2.9K]

Missing data: the wave number

k=60 cm^{-1}

(a)  z = 0.003 sin (6000y-31.4 t)

For a transverse wave travelling in the positive y-direction and with vibration along the z-direction, the equation of the wave is

z = A sin (ky-\omega t)

where

A is the amplitude of the wave

k is the wave number

\omega is the angular frequency

t is the time

In this situation:

A = 3.0 mm = 0.003 m is the amplitude

k = 60 cm^{-1} = 6000 m^{-1} is the wave number

T = 0.20 s is the period, so the angular frequency is

\omega=\frac{2\pi}{T}=\frac{2\pi}{0.20}=31.4 rad/s

So, the wave equation (in meters) is

z = 0.003 sin (6000y-31.4 t)

(b) 0.094 m/s

For a transverse wave, the transverse speed is equal to the derivative of the displacement of the wave, so in this case:

v_t = z' = -A \omega cos (ky-\omega t)

So the maximum transverse wave occurs when the cosine term is equal to 1, therefore the maximum transverse speed must be

v_{t}_{max} =\omega A

where

\omega = 31.4 rad/s\\A = 0.003 m

Substituting,

v_{t}_{max}=(31.4)(0.003)=0.094 m/s

(c) 5.24 mm/s

The wave speed is given by

v=f \lambda

where

f is the frequency of the wave

\lambda is the wavelength

The frequency can be found from the angular frequency:

f=\frac{\omega}{2\pi}=\frac{31.4}{2\pi}=5 Hz

While the wavelength can be found from the wave number:

\lambda = \frac{2\pi}{k}=\frac{2\pi}{6000}=1.05\cdot 10^{-3} m

Therefore, the wave speed is

v=(5)(1.05\cdot 10^{-3} )=5.24 \cdot 10^{-3} m/s = 5.24 mm/s

7 0
3 years ago
Hi friends any lover mates be mine wannt​
Hunter-Best [27]

Answer:

um how about no.. this is not the site for what you're looking for...

Explanation:

4 0
3 years ago
Read 2 more answers
A net force of 125 N accelerates a 25.0 kg mass. What is the resulting acceleration?
Neko [114]

Answer: a=5 m/s^2

Explanation:

The acceleration of an object can be calculated by using Newton's second law:

F=ma

where

F is the net force applied on the object

m is the mass of the object

a is its acceleration

In this problem, we have F=125 N and m=25.0 kg, so we can rearrange the equation to calculate the acceleration:

a=\frac{F}{m}=\frac{125 N}{25.0 kg}=5 m/s^2

5 0
3 years ago
Read 2 more answers
How is frequency related to the sound we hear?
Leviafan [203]
Frequency is the vibration of noise and the vibration determines the pitch, which we depend on to be a pitch or frequency we can hear. If it's too high or too low our ears can't hear it 
8 0
3 years ago
Tonya is thinking about the topic presented in the text, "Do opposites really attract?" Which of her thoughts is an example of c
tigry1 [53]

tanya is dumb  j j j j j j j j j jj j j j

6 0
3 years ago
Other questions:
  • Hail comes straight down at a mass rate of m/Δt = 0.050 kg/s and an initial velocity of v0 = -15 m/s and strikes the roof perpen
    14·1 answer
  • Q: Why are distances in space often measured in light years?
    10·2 answers
  • An auto, starting from rest, undergoes constant acceleration and covers a distance of 1200 meters. The final speed of the auto i
    15·1 answer
  • A wave has a wavelength of 6 mm and a frequency of 9 hertz. What is its speed? what is the answer and units?
    15·1 answer
  • Match the given equation with the verbal description of the surface: A. Circular Cylinder B. Plane C. Cone D. Half plane E. Sphe
    8·1 answer
  • How is momentum conserved is a Newton's cradle when one steel ball hits the other
    7·1 answer
  • Im not going to lie, this is a physics Q right here<br> plz guys im being serious i need help
    11·1 answer
  • A car is at x1 = 15m at time t1 = 5 secs &amp; later seen at x2=20m at time t2 = 10secs. find the average velocity of the car.​
    11·1 answer
  • Multiplying a vector with another vector results in what type of answer.
    11·1 answer
  • The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!