Metaphase; the centromeres of duplicated chromosomes line up in the middle of the cell. (It's also the shortest phase of mitosis).
If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Answer:
a. Potential energy decreases and Kinetic energy increases
Explanation:
Because as he comes down due to its steepness the speed of the boy or you can say his KE increases and since he comes from a high position (hill) to the lower ground his potential energy decreases simultaneously
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Energy can neither be created e destroyed. It can only be transferred from one form to another. Implying this law and the above explainations we conclude that at the bottom of the pendulum,the potential energy=0 and the kinetic energy=294J as the entire potential energy is converted to kinetic energy at the bottom.