Answer:
V = 125.7m/min
Explanation:
Given:
L = 400 mm ≈ 0.4m
D = 150 mm ≈ 0.15m
T = 5 minutes
F = 0.30mm ≈ 0.0003m
To calculate the cutting speed, let's use the formula :

We are to find the speed, V. Let's make it the subject.

Substituting values we have:

V = 125.68 m/min ≈ 125.7 m/min
Therefore, V = 125.7m/min
Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
A <u>centrifugal switch</u> is used commonly in open split-phase motors to disconnect the start winding from the electrical circuit when the motor reaches approximately 75% of its rated speed.
Hope that helps!
Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Https://www.slader.com/discussion/question/an-insulated-rigid-tank-is-divided-into-two-equal-parts-by-a-partition-initially-one-part-contains-4/
there will be the answer