Answer:
t = 6179.1 s = 102.9 min = 1.7 h
Explanation:
The energy provided by the resistance heater must be equal to the energy required to boil the water:
E = ΔQ
ηPt = mH
where.
η = efficiency = 84.5 % = 0.845
P = Power = 2.61 KW = 2610 W
t = time = ?
m = mass of water = 6.03 kg
H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Therefore,
(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>
Answer:
- Moisture/ water content w = 26%
Explanation:
- Initial mass of saturated soil w1 = mass of soil - weight of container
= 113.27 g - 49.31 g = 63.96 g
- Final mass of soil after oven w2 = mass of soil - weight of container
= 100.06 g - 49.31 g = 50.75
Moisture /water content, w =
=
= 0.26 = 26%
Void ratio = water content X specific gravity of solid
= 0.26 X 2.80 =0.728
Answer:
The source code files for this question have been attached to this response.
Please download it and go through each of the class files.
The codes contain explanatory comments explaining important segments of the codes, kindly go through these comments.
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
• educated
•very curious
•discover new things
•Investigate
•search unknown
Explanation:
The obtained data from water properties tables are:
Point 1 (condenser exit) @ 8 KPa, saturated fluid

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

Calculate mass flow rates
Part a) @ 18 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency

Part b) @ 4 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency
