Answer:
3.1 x 10⁻²¹ Nm
Explanation:
When placed in an external electric filed, an electric dipole experiences a torque. and this torque is represented mathematically with the equation:
torque (τ) = dipole moment vector (P) x electric field vector (E)
τ = P. E . sin θ
where θ is the angle between the water molecule and the electric field, which in this case is 90° (because this is where the torque is maximum)
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . sin90
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . 1
solve for τ
τ = 3.1 x 10⁻²¹ Nm
the maximum possible torque on the water molecule is therefore 3.1 x 10⁻²¹ Nm
Answer : (C) "Higher frequencies have larger spaces between lines".
Explanation:
In Young's experiment, the condition for constructive interference is given by :
.........(1)
n is order or number of lines observed
d is distance between slits
is the angle between the path and the line from screen to the slits.
We also know that, 
or

where,
c is the speed of light
is frequency
is wavelength
So, equation (1) turns into


So,

or
Higher frequencies have larger spaces between line.
So, correct option is (C).
Answer:
The answer to your question is ΔH° rxn = -1343.9 kJ/mol
Explanation:
P₄O₆ (s) + 2 O₂ (g) ⇒ P₄O₁₀
ΔH°rxn = ?
Formula
ΔH°rxn = ∑H° products - ∑H° reactants
H° P₄O₆ = -1640.1 kJ/mol
H° O₂ = 0 kJ/mol
H° P₄O₁₀ = -2984 kJ/mol
-Substitution
ΔH° rxn = (-2984) - (-1640.1) - (0)
-Simplification
ΔH° rxn = -2984 + 1640.1
ΔH° rxn = -1343.9 kJ/mol
160.0g
Mass =volume x density = 200.0 mL x 0.8 g/mL= 160.0 g