Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it
Answer:
130.22 g
Explanation:
Parameters given:
Mass of water Mw = 225 g
Mass of stirrer Ms = 40 g
Mass of silver M(S) = 410 g
By applying the law of conservation of energy:
(McCc + MsCs + MwCw)ΔTw = M(S)C(S)ΔT(S)
where Mc = Mass of cup
Cc = Specific heat capacity of aluminium cup = 900 J/gC
Cs = Specific heat capacity of copper stirrer = 387 J/gC
Cw = Specific heat capacity of water = 4186 J/gC
ΔTw = change in temperature of water = 32 - 27 = 5 °C
C(S) = Specific heat capacity of silver = 234 J/gC
ΔT(S) = change in temperature of silver = 88 - 32 = 56 °C
Therefore:
[(Mc * 900) + (40 * 387) + (225 * 4186)] * 5 = 410 * 234 * 56
(900Mc + 957330) * 5 = 5276700
900Mc + 957330 = 5276700 / 5 = 1074528
900Mc = 1074528 - 957330
900Mc = 117198
Mc = 117198/ 900
Mc = 130.22 g
The mass of the cup is 130.22 g.
Answer:
Explanation:
1.
=
* cos
⇒ 16*cos32 ≈ 13.6 m/s (13.56)
2.
=
* sin
⇒ 16* sin32 ≈ 9.4 m/s
3.
=
=
(the g (gravity) depends on the country but i'll take the average g which is 9.2m/s^2)
≈ 3.6677+1.5 ≈ 5.2m
4.
=
=
≈ 23.5m (23.47)
5. -
answer 4 could be wrong, not certain about that one and i don't know 5
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
I can’t see it’s too blurry