Answer:



Explanation:
M = Mass of Uranus
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Uranus = 25360 km
h = Altitude = 104000 km
= Radius of Miranda = 236 km
m = Mass of Miranda = 
Acceleration due to gravity is given by

The mass of Uranus is 
Acceleration is given by

Miranda's acceleration due to its orbital motion about Uranus is 
On Miranda

Acceleration due to Miranda's gravity at the surface of Miranda is 
No, both the objects will fall towards Uranus. Also, they are not stationary.
Answer:
<em>The velocity of the truck is 3.33 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and velocity v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If some collision occurs, the velocities change to v' and the final momentum is:

In a system of two masses:

There are two objects: The m1=4000 Kg car and the m2=6000 Kg truck. The car was moving initially at v1=4 m/s and the truck was at rest v2=0. After the collision, the car moves at v1'=-1 m/s. We need to find the velocity of the truck v2'. Solving for v2':

Substituting:



The velocity of the truck is 3.33 m/s
The main units for acceleration are <span>the meter per squared second as told by Galileo Galilei. Although there can be more than one example, I consider this one to be correct. Hope it will help you in some measure.</span>
The maximum force acts between B and C as the graph is steepest showing maximum deceleration