1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
5

Suppose that a charged particle of diameter 1.00 micrometer moves with constant speed in an electric field of magnitude 1.00×105

newtons per coulomb while acted upon by a drag force of 7.25×10−11 newtons. what is the charge q1 on the particle? ignore the effects of gravity.

Physics
2 answers:
OLga [1]3 years ago
6 0

The charge q₁ on the particle is about 7.25 × 10⁻¹⁶ C

<h3>Further explanation</h3>

Electric charge consists of two types i.e. positively electric charge and negatively electric charge.

There was a famous scientist who investigated about this charges. His name is Coulomb and succeeded in formulating the force of attraction or repulsion between two charges i.e. :

\large {\boxed {F = k \frac{Q_1Q_2}{R^2} } }

<em>F = electric force (N)</em>

<em>k = electric constant (N m² / C²)</em>

<em>q = electric charge (C)</em>

<em>r = distance between charges (m)</em>

<em>The value of k in a vacuum = 9 x 10⁹ (N m² / C²)</em>

Let's tackle the problem now !

<u>Given:</u>

diameter of charged particle = d = 1 μm

electric field strength = E = 1.00 × 10⁵ N/C

drag force = F = 7.25 × 10⁻¹¹ N

<u>Unknown:</u>

charge of particle = q₁ = ?

<u>Solution:</u>

The drag forces is caused by the electric force acting on the charge particles.

F = q_1 \times E

7.25 \times 10^{-11} = q_1 \times 1.00 \times 10^5

q_1 = (7.25 \times 10^{-11}) \div (1.00 \times 10^5)

q_1 = 7.25 \times 10^{-16} ~ \text{Coulomb}

<h3>Learn more</h3>
  • The three resistors : brainly.com/question/9503202
  • A series circuit : brainly.com/question/1518810
  • Compare and contrast a series and parallel circuit : brainly.com/question/539204

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Static Electricity

Keywords: Series , Parallel , Measurement , Absolute , Error , Combination , Resistor , Resistance , Ohm , Charge , Small , Forces

Dovator [93]3 years ago
3 0
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating). 
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
You might be interested in
4:list one food chain that is part of the food web.
Sophie [7]
4. Grass - Caterpillar - Hedgehog - Fox
5. Caterpillar, Rabbit, Mouse.
6. Cougar and Fox.
7. Bacteria
8. The bird, hedgehog, Fox and cougar would be effected since the Hedgehogs and birds would soon die out due to the loss of their food. Once they die out, the cougar and Fox would have no predators left to eat.
6 0
3 years ago
10.<br> Name THREE conductors and insulators with examples from everyday use.
Anna35 [415]

Answer:

Explanation:

Some common conductors are copper, aluminum, gold, and silver. Some common insulators are glass, air, plastic, rubber, and wood.

7 0
3 years ago
A sample of an unknown substance has a mass of 89.5 g. If 345.2 J of heat are required to heat the substance from 285 K to 305 K
Zinaida [17]

Heat gained in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. It is expressed as follows:<span>

Heat = mC(T2-T1)
345.2 = 89.5(C)(305 - 285)
C = 0.1928 </span>J/g•K

7 0
3 years ago
Read 2 more answers
A negative charge of 20 x 10-6C and another charge of 15 x 10-6C are separated by as distance of 0.7 m.
denpristay [2]

Answer:

Approximately 5.5\; \rm N, assuming that the volume of these two charged objects is negligible.

Explanation:

Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.

Let q_1 and q_2 denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question, q_1 = 20 \times 10^{-6}\; \rm C  and q_2 = 15 \times 10^{-6}\; \rm C.

Let r denote the distance between these two point charges. In this question, r = 0.7\; \rm m.

Let k denote the Coulomb constant. In standard units, k \approx 8.98755\times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2}.

By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\end{aligned}.

Substitute in the values and evaluate:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\\ &\approx 8.98755 \times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2} \\ &\quad \times 20\times 10^{-6}\; \rm C\\ &\quad \times 15\times 10^{-6}\; \rm C \\ &\quad \times \frac{1}{{(0.7\; \rm m)}^{2}}\\ &\approx 5.5\; \rm N \end{aligned}.

8 0
3 years ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
3 years ago
Other questions:
  • What causes atoms to bond together<br> ?!?
    12·2 answers
  • Light from the sun travels through space to earths atmosphere. Which will light waves do when they move from empty space into ma
    13·1 answer
  • For an object to be seen, light must leave _______ and enter _______.
    11·1 answer
  • A plane flies 1,480 miles in 4 hours, with the wind. On its return trip, it took 5 hours flying against the same wind to go 1,15
    9·1 answer
  • All of the noble gases, Group 18, have eight valence electrons in its outer shell (excluding helium which only has two). Which o
    9·2 answers
  • A car rounds a curve while maintaining a constant speed. Is there a net force on the car as it rounds the curve?
    6·1 answer
  • What is an example of cultural change due to technology?
    10·1 answer
  • Explain why a steel block sinks but a steel ship floats
    7·1 answer
  • Convert 15*c in Fahrenheit
    11·2 answers
  • A stretched string has a mass per unit length of 5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string has an ampl
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!