1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
5

Suppose that a charged particle of diameter 1.00 micrometer moves with constant speed in an electric field of magnitude 1.00×105

newtons per coulomb while acted upon by a drag force of 7.25×10−11 newtons. what is the charge q1 on the particle? ignore the effects of gravity.

Physics
2 answers:
OLga [1]3 years ago
6 0

The charge q₁ on the particle is about 7.25 × 10⁻¹⁶ C

<h3>Further explanation</h3>

Electric charge consists of two types i.e. positively electric charge and negatively electric charge.

There was a famous scientist who investigated about this charges. His name is Coulomb and succeeded in formulating the force of attraction or repulsion between two charges i.e. :

\large {\boxed {F = k \frac{Q_1Q_2}{R^2} } }

<em>F = electric force (N)</em>

<em>k = electric constant (N m² / C²)</em>

<em>q = electric charge (C)</em>

<em>r = distance between charges (m)</em>

<em>The value of k in a vacuum = 9 x 10⁹ (N m² / C²)</em>

Let's tackle the problem now !

<u>Given:</u>

diameter of charged particle = d = 1 μm

electric field strength = E = 1.00 × 10⁵ N/C

drag force = F = 7.25 × 10⁻¹¹ N

<u>Unknown:</u>

charge of particle = q₁ = ?

<u>Solution:</u>

The drag forces is caused by the electric force acting on the charge particles.

F = q_1 \times E

7.25 \times 10^{-11} = q_1 \times 1.00 \times 10^5

q_1 = (7.25 \times 10^{-11}) \div (1.00 \times 10^5)

q_1 = 7.25 \times 10^{-16} ~ \text{Coulomb}

<h3>Learn more</h3>
  • The three resistors : brainly.com/question/9503202
  • A series circuit : brainly.com/question/1518810
  • Compare and contrast a series and parallel circuit : brainly.com/question/539204

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Static Electricity

Keywords: Series , Parallel , Measurement , Absolute , Error , Combination , Resistor , Resistance , Ohm , Charge , Small , Forces

Dovator [93]3 years ago
3 0
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating). 
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>
You might be interested in
A paper clip moves towards a magnet lying on a table. What forces are present in this situation? How do these forces compare?
Hatshy [7]
The magnet is at a gravitational force while the paper clip is at an applied force
5 0
2 years ago
2. Think about the energy that was needed to form the wave in the pool. Where did the energy come from? ​
patriot [66]
Wave energy is actually a concentrated form of solar power generated by the action of the wind blowing across the surface of the oceans water which can then be used as a renewable source of energy. As the suns rays strike the Earth's atmosphere, they warm it up.
6 0
2 years ago
As light shines from air to another medium, i = 42.0°. The light bends toward the normal and refracts at 38.0° What is
eduard

Answer:

1.09

Explanation:

8 0
3 years ago
A long, straight, cylindrical wire of radius R carries a current uniformly distributed over its cross section.
Mice21 [21]

Answer:

Explanation:

We shall solve this question with the help of Ampere's circuital law.

Ampere's ,law

∫ B dl = μ₀ I , B is magnetic field at distance x from the axis within wire

we shall find magnetic field at distance x . current enclosed in the area of circle of radius x

=  I x π x²  / π R²

= I x²  /  R²

B x 2π x = μ₀  x current enclosed

B x 2π x = μ₀  x  I x²  /  R²

B =  μ₀   I x  / 2π R²

Maximum magnetic B₀ field  will be when x = R

B₀ = μ₀I   / 2π R

Given

B = B₀ / 3

μ₀   I x  / 2π R² = μ₀I   / 2π R x 3

x = R / 3

b ) The largest value of magnetic field is on the surface of wire

B₀ = μ₀I   / 2π R

At distance x outside , let magnetic field be B

Applying Ampere's circuital law

∫ B dl = μ₀ I

B x 2π x = μ₀ I

B = μ₀ I / 2π x

Given B = B₀ / 3

μ₀ I / 2π x = μ₀I   / 2π R x 3

x = 3R .

3 0
3 years ago
An AM radio station broadcasts isotropically (equally in all directions) with an average power of 3.40 kW. A receiving antenna 6
lara [203]

To solve the problem we will apply the concepts related to the Intensity as a function of the power and the area, as well as the electric field as a function of the current, the speed of light and the permeability in free space, as shown below.

The intensity of the wave at the receiver is

I = \frac{P_{avg}}{A}

I = \frac{P_{avg}}{4\pi r^2}

I = \frac{3.4*10^3}{4\pi(4*1609.34)^2} \rightarrow 1mile = 1609.3m

I = 6.529*10^{-6}W/m^2

The amplitude of electric field at the receiver is

I = \frac{E_{max}^2}{2\mu_0 c}

E_{max}= \sqrt{2I\mu_0 c}

The amplitude of induced emf by this signal between the ends of the receiving antenna is

\epsilon_{max} = E_{max} d

\epsilon_{max} = \sqrt{2I \mu_0 cd}

Here,

I = Current

\mu_0 = Permeability at free space

c = Light speed

d = Distance

Replacing,

\epsilon_{max} = \sqrt{2(6.529*10^{-6})(4\pi*10^{-7})(3*10^{8})(60.0*10^{-2})}

\epsilon_{max} = 0.05434V

Thus, the amplitude of induced emf by this signal between the ends of the receiving antenna is 0.0543V

6 0
3 years ago
Other questions:
  • If you double the radius of the earth and keep the mass of the earth the same, the acceleration of gravity on the surface of the
    7·1 answer
  • For all simple machines, when the output force is greater than the input force,
    11·1 answer
  • A student submerges an irregularly object in a graduated cylinder half filled with water. The level of the water in the cylinder
    15·1 answer
  • When divided by △t, (vf - vi) is used to determine which characteristic? A.Speed B.Direction C. Displacement D.Acceleration
    10·1 answer
  • The volume control on a surround-sound amplifier is adjusted so the sound intensity level at the listening position increases fr
    5·1 answer
  • A string is stretched to a length of 339 cm and both ends are fixed. If the density of the string is 0.0073 g/cm, and its tensio
    11·1 answer
  • a 55 kg baseball player slides into third base with an initial speed of 4.6 m/s If the coefficient of kinetic friction between t
    14·1 answer
  • Two people are talking at a distance of 3.0 m from where you are, and
    8·1 answer
  • During an experiment a student records the net horizontal force exerted on an object moving in a straight
    5·1 answer
  • Use the same line to answer the questions
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!