1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
5

What force is needed to accelerate an object 5 m/s if the object has a mass of 10kg?

Physics
1 answer:
nevsk [136]3 years ago
6 0
The <span>force that is needed to accelerate an object 5 m/s if the object has a mass of 10kg 50N because you multiply 5 and 10</span>
You might be interested in
A city planner needs to make a model of the city. In real life, the tallest tree in the city is 40 feet tall. The shortest tree
Verdich [7]
To solve this you must set up what is called a proportion.  A proportion is a way of comparing two comparing values where one of the four values is missing.  In your problem the missing value is the height of the smallest tree in the model.

To set up a proportion, you need all of your values.  The easiest way to do this is to list them:

Highest tree in real life:  40ft
Highest tree in model:  10ft
Smallest tree in real life:  4ft
Smallest tree in model:  x

So know you can set your proportion like this:

40/4 = 4/x

(When setting up a proportion, you always want to have the values belong to each other.  For example don't put the height of the small tree in the model underneath the value of the highest tree in real life.)

So know to find what the x values equals, we need to cross multiply.  And then all that's left after that is to solve for x.

40 times x = 4 times 4

40x = 16

x = 2.5

The smallest tree in the model should equal 2.5 feet.

Hope this helps! :)



6 0
3 years ago
Which number below equals 129000? * *
solong [7]

Answer:

0.1

Explanation:

5 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Which factors allow for life on Earth​
Elan Coil [88]

Are there supposed to be multiple choices for this question?

6 0
3 years ago
Read 2 more answers
James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than
Molodets [167]

Answer:

0.12 K

Explanation:

height, h = 51 m

let the mass of water is m.

Specific heat of water, c = 4190 J/kg K

According to the transformation of energy

Potential energy of water = thermal energy of water

m x g x h = m x c x ΔT

Where, ΔT is the rise in temperature

g x h =  c x ΔT

9.8 x 51 = 4190 x ΔT

ΔT = 0.12 K

Thus, the rise in temperature is 0.12 K.

7 0
3 years ago
Other questions:
  • (this is somehow part of my science unit, dont ask why)
    15·1 answer
  • Can someone help me on 2 science question,
    9·2 answers
  • Your neighbor Paul has rented a truck with a loading ramp. The ramp is tilted upward at 25°, and Paul is pulling a large crate u
    14·1 answer
  • A particle with a charge of 2e moves between two points which have a potential difference of 75V. What is the change in potentia
    13·1 answer
  • What is Newton's Law
    11·1 answer
  • The formula for sodium sulfide is na2s what does it mean
    8·1 answer
  • Find the period of the leg of a man who is 1.83 m in height with a mass of 67 kg. The moment of inertia of a cylinder rotating a
    5·1 answer
  • Anton created a chart listing different types of materials.
    12·2 answers
  • A steel cable of diameter 3.0 cm supports a load of 2.0kN. What is the fractional length increase of the cable compared with the
    11·1 answer
  • A 10,000 kg traveling 15m/s strikes a second car which is at rest (not moving). The two stick together and move off with speed o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!