Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
Answer:
P₂ = 1.22 kPa
Explanation:
This problem can be solved using the equation of state:

where,
P₁ = initial pressure = 1 KPa
P₂ = final pressure = ?
V₁ = initial Volume = 1 liter
V₂ = final volume = 1.1 liter
T₁ = initial temperature = 290 k
T₂ = final temperature = 390 k
Therefore,

<u>P₂ = 1.22 kPa</u>
Answer:
a) B = 1.99 x 10⁻⁴ Tesla
b) B = 0.88 x 10⁻⁴ Tesla
Explanation:
According to Biot - Savart Law, the magnetic field due to a currnt carrying straight wire is given as:
B = μ₀ I L/4πr²
where,
μ₀ = permebility of free space = 1.25 x 10⁻⁶ H m⁻¹
I = current = 2 A
L = Length of wire = 40 cm = 0.4 m
a)
r = radius of magnetic field = 2 cm = 0.02 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.02 m)²
<u>B = 1.99 x 10⁻⁴ Tesla</u>
<u></u>
b)
r = radius of magnetic field = 3 cm = 0.03 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.03 m)²
<u>B = 0.88 x 10⁻⁴ Tesla</u>