The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
Answer: The correct answer is graph A.
Explanation:
See Khan Academy.
<span>I believe it's insulation.</span>
A) the periodic time is given by the equation;
T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
= 6.28 × √0.0673
= 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
thus; frequency = 0.614 Hz
b) The vertical distance, the height is given by
h= 0.66 cos 12
h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
mgh = 1/2mv²
v² = 2gΔh = 2×9.81 × 0.01
= 0.1962
v = 0.443 m/s
c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
= 1/2 × 0.310 × 0.443²
= 0.0304 J
write out what you have on both sides, then just use basic multiplication to try and even out both sides. I can help if you need me to balance some for you!!