Answer:
Explanation:
Using the Ideal Gas Law we have and the number of moles n could be expressed as , where m is the mass and M is the molar mass.
Now, replacing the number of moles in the equation for the ideal gass law:
If we pass the V to divide:
As the density is expressed as , we have:
Solving for the density:
Then we need to convert the units to the S.I.:
Finally we replace the values:
Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
Answer:
None
Explanation:
Cl₂ is above Br₂ in the activity series.
Bromine will not displace chlorine from its salts.
The reaction will not occur.
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal
For mild to moderate reactions, treatment involves removing the stinger, washing the area with soap and water, and applying cold compresses or ice. Creams to the affected area can help reduce discomfort. Severe reactions may need epinephrine.