1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
15

Suppose a car approaches a hill and has an initial speed of 108 km/h at the bottom of the hill. The driver takes her foot off of

the gas pedal and allows the car to coast up the hill.a. If the car has the initial speed stated at a height of h = 0, how high, in meters, can the car coast up a hill if work done by friction is negligible?b. If, in actuality, a 710 kg car with an initial speed of 108 km/h is observed to coast up a hill and stops at a height 21 m above its starting point, how much thermal energy was generated by friction in J?c. What is the magnitude of the average force of friction, in newtons, if the hill has a slope 2.9 degrees above the horizontal?

Physics
1 answer:
Aleks04 [339]3 years ago
6 0

Answer:

a) The car will reach a height of 45.9 m.

b) The amount of thermal energy generated is 173382 J.

c) The magnitude of the force of friction is 417.8 N.  

Explanation:

Hi there!

a) In this problem, we have to use the conservation of energy. The energy conservation theorem states that the energy of a system remains constant. Energy can´t be created nor destroyed, only transformed. In the case of the car, the initial kinetic energy is transformed into potential energy as the car´s height increases while coasting up the hill.

Then, all the initial kinetic energy (KE) will be transformed into potential energy (PE) (only if there is no friction).

The equation of KE is the following:

KE = 1/2 · m · v²

Where:

m = mass of the car.

v = speed of the car.

The equation of PE is the following:

PE = m · g · h

Where:

m = mass of the car.

g = acceleration due to gravity.

h = height at which the car is located.

Since work done by friction is negligible, we can assume that all the initial kinetic energy will be transformed into potential energy. Then:

KE at the bottom of the hill = PE at the top of the hill

1/2 · m · v² = m · g · h

Solving for h:

1/2 · v² / g = h

Let´s convert the speed unit into m/s:

108 km/h · 1000 m/ 1 km · 1 h / 3600 s = 30 m/s

Now, let´s calculate h:

h = 1/2 · (30 m/s)² / 9.8 m/s²

h = 45.9 m

The car will reach a height of 45.9 m.

b) In this case, all the kinetic energy is not transformed into potential energy because some energy is transformed into thermal energy due to friction. The thermal energy generated is equal to the work done by friction. Then:

KE at the bottom of the hill = PE + work done by friction

KE = PE + Wfr  (where Wfr is the work done by friction).

1/2 · m · v² = m · g · h + Wfr

1/2 · m · v² - m · g · h = Wfr

1/2 · 710 kg · (30 m/s)² - 710 kg · 9.8 m/s² · 21 m = Wfr

Wfr = 173382 J

The amount of thermal energy generated is 173382 J.

c) The work done by friction is calculated as follows:

Wfr = Ffr · Δx

Where:

Ffr = friction force.

Δx = traveled distance

Please, see the attached figure to notice that the traveled distance can be calculated by trigonometry using this trigonometric rule of right triangles:

sin angle = opposite side / hypotenuse

In our case:

sin 2.9° = h / Δx

Δx = h / sin 2.9°

Δx = 21 m / sin 2.9° = 415 m

Then, solving for the friction force using the equation of the work done by friction:

Wfr = Ffr · Δx

Wfr / Δx = Ffr

173382 J / 415 m = Ffr

Ffr = 417.8 N

The magnitude of the force of friction is 417.8 N

You might be interested in
What is the displacement of the runner, whose velocity versus time graph is shown in the Figure, in the first 15.5 s?
muminat

Answer:

10 displacement of the runner

6 0
3 years ago
If a person consumes an extra 500 calories per day, how long would it take before he or she gained one pound of fat?
Ostrovityanka [42]
The answer is A. 10 days
6 0
3 years ago
Order the speed of sound through these materials from the slowest to the fastest.
Sholpan [36]

Speed of sound in cold air < Speed of sound in Warm air < Speed of sound in hot molten lead < Speed of sound in water

Explanation:

Step 1:

Speed of sound in water varies from 1450 to 1498 meters per second

Speed of sound in Hot Molten lead is approximately 1210 meters per second

Speed of sound in warm air is approximately 338.89 meters per second

Speed of sound in cold air is approximately 293.33 meters per second

Step 2:

In warm air sound travels faster than that of sound travelling nature in cold air.

∴ Speed of sound in cold air < Speed of sound in Warm air < Speed of sound in hot molten lead < Speed of sound in water

Speed of sound in cold air the slowest while Speed of sound in water is the fastest mean.

8 0
3 years ago
An electron passes through a point 2.83 cm 2.83 cm from a long straight wire as it moves at 35.5 % 35.5% of the speed of light p
igor_vitrenko [27]

Answer:

The magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

Explanation:

Given:

Distance from the wire to the field point r = 2.83 \times 10^{-2} m

Speed of electron v = 35.5 \%c

Current I = 17.7 A

For finding the acceleration,

First find the magnetic field due to wire,

  B = \frac{\mu _{o}I }{2\pi r }

Where \mu_{o} = 4\pi   \times 10^{-7}

  B = \frac{4\pi \times 10^{-7}  \times 17.7 }{2\pi (2.83 \times 10^{-2} ) }

  B = 12.50 \times 10^{-5} T

The magnetic force exerted on the electron passing through straight wire,

  F = qvB  

  F = 1.6 \times 10^{-19} \times 0.355 \times 3 \times 10^{8} \times 12.50 \times 10^{-5}

  F = 21.3 \times 10^{-16} N

From the newton's second law

  F = ma

Where m = mass of electron = 9.1 \times 10^{-31} kg

So acceleration is given by,

   a = \frac{F}{m}

   a = \frac{21.3 \times 10^{-16} }{9.1 \times 10^{-31} }

   a = 2.34 \times 10^{15} \frac{m}{s^{2} }

Therefore, the magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

7 0
2 years ago
1. What is the total distance traveled?<br> A 3.0m <br> B 4.0m <br> C 5.0m <br> D 6.0m
Ostrovityanka [42]

Answer:

c

Explanation:

7 0
2 years ago
Other questions:
  • Is soy sauce a heterogeneous or homogeneous mixture?
    9·1 answer
  • The distance formula can be used to prove a quadrilateral has select one:
    13·2 answers
  • Will mark as BRAINLIEST....... The Displacement x of particle moving in one dimension under the action of constant force is rela
    9·1 answer
  • Exercise provides a healthy outlet for feelings, which helps improve
    6·1 answer
  • A Formula One race car with mass 770.0 kg is speeding through a course in Monaco and enters a circular turn at 235.0 km/h in the
    6·1 answer
  • This diagram shows a process the power stars. This process is called
    10·2 answers
  • What are the layers of the Earth's atmosphere?
    13·2 answers
  • A 10 N force and an 18 N force act in the same direction on an object. What is the net force on the object?
    14·1 answer
  • Compare and contrast how sound waves behave when they
    5·1 answer
  • Say you were at mission control on
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!