Answer:
To understand all the different kind of elements and how they work. Nature is a beautiful thing and it is important we understand how they survive and how we can help. The solar system is a mandatory nature. Learning about other planets also helps us feel safe and more knowledgable.
Answer:
3rd order polynomial
Explanation:
Given that the increase in the order of the polynomial the error between the curve fit and measured data will decreases hence :
The polynomial order that is best to use is the 3rd order polynomial, this is because using a 3rd order polynomial will produce a less variance and a low Bias
Answer:
huh english plssss bc I didn't understand
Answer:
Second projectile is 1.4 times faster than first projectile.
Explanation:
By linear momentum conservation
Pi = Pf
m x U + M x 0 = (m + M) x V

Now Since this projectile + pendulum system rises to height 'h', So using energy conservation:
KEi + PEi = KEf + PEf
PEi = 0, at reference point
KEf = 0, Speed of system zero at height 'h'

PEf = (m + M) g h
So,


So from above value of V
Initial velocity of projectile =U

Now Since mass of projectile and pendulum are constant, So Initial velocity of projectile is proportional to the square root of height swung by pendulum.
Which means



U₂ = 1.41 U₁
Therefore we can say that ,Second projectile is 1.4 times faster than first projectile.
Answer:
Buffy weigh's 28.39 kg
Explanation:
Given;
mass of Buffy and wagon, M = 10.4 kg
final velocity of Buffy - wagon system, v = 3.4 m/s
Buffy's velocity relative to the ground, u₁ = 1.7 m/s
Wagon's velocity relative to the ground, u₂ = 8.04 m/s
Buffy's velocity = 1.7 - 3.4 = - 1.7 m/s
Wagon's velocity = 8.04 - 3.4 = 4.64 m/s
Apply the principle of conservation of linear momentum;
1.7 x m = 4.64 x 10.4
where;
m is mass of wagon
1.7 m = 48.256
m = 48.256 / 1.7
m = 28.39 kg
Therefore, Buffy weigh's 28.39 kg