Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is
put here value with
turbine is insulated so q = 0
so here
solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW
Answer:
Explanation:
From the question we are told that:
Initial Pressure
Initial Temperature
Final Pressure
Final Temperature
Work Output
Generally Specific Energy from table is
At initial state
With
Specific Volume
At Final state
Generally the equation for The Process is mathematically given by
Assuming Mass to be Equal
Where
Therefore
Answer:
a) The Net power developed in this air-standard Brayton cycle is 43.8MW
b) The rate of heat addition in the combustor is 84.2MW
c) The thermal efficiency of the cycle is 52%
Explanation:
To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.
Considering this:
Now we can calculate the enthalpy of each work point:
h₁=281.4KJ/Kg
h₂=695.41KJ/Kg
h₃=2105KJ/Kg
h₄=957.14KJ/Kg
The net power developed:
The rate of heat:
The thermal efficiency:
This is an arch, its basically a half circle attach to a rectangle, you could also think of it as an upside down U. A dome is a Sphere with the inside hollowed out.
1 difference is a dome is a 3 dimensional shape while an arch is normally not. Or that a dome is the complete shape with a arch act as it’s diameter.