Answer:
False I'm pretty sure sorry If its wrong
Answer: 1.137*10^7 Btu/h.
Explanation:
Given data:
Efficiency of the plant = 4.5percent
Net power output of the plant = 150kw
Solution:
The required collection rate
QH = W/n
= 150/0.045 * 0.94782/ 1 /60 */60 Btu/h.
= 3333.333 *3412.152Btu/h.
= 11373840 Btu/h
= 1.137*10^7 Btu/h.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.