Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :
So, the distance travelled by the object is 192 meters.
100/2.5 because power=energy/time
Answer:
distance = 6 m
Explanation:
- Distance is a scalar quantity (so, only magnitude, no direction), and it is calculated as the scalar sum of all the distances travelled by an object during its motion, regardless of the direction. So, in this problem, the distance covered by the pinecone is
d = 4 m + 2 m = 6 m
- Displacement is a vector quantity (magnitude+direction), and its magnitude is calculate as the distance in a straight line between the final position and the initial position of the object. In this case, the final position is 2 m west and the initial position is 0 m, so the displacement of the pinecone is
d = 2 m west - 0 m = 2 m west
So, a scalar quantity from this scenario is
distance = 6 m
Total resistance=R1+ R2= 6Ω
Voltage=12v
Current =
Current= 2A
In a series circuit, equal current passes through every resistance.
Answer is option A
Answer:
leaf and a balloon is the correct answer