<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
The positive and the negative side
I hope this helps :)
A pulsar, or a pulsing star, is a highly magnetized neutron star that emits a beam of electromagnetic radiation. So they blink when they are rotating because the beam of radiation they emit can only be seen when it is facing the Earth.
Hope this helps.
Answer: B) Velocity
Explanation:
Velocity is a vector quantity. Velocities have both magnitude and direction.
Answer:
it is option 3
Explanation:
because as red shift occurs when object in a space is far from us, so many of the stars we know will be seen in red shift because they are far from us by 20 years the most of the starts we see will be in red shift