Answer:
The current needed is 1790.26 A
Explanation:
Given;
magnitude of magnetic field, B = 1.5 T
length of the solenoid, L = 1.8 m
diameter of the solenoid, d = 75 cm = 0.75 m
The magnetic field is given by;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
I is current in the solenoid
N is the number of turns, calculated as;

The current needed is calculated as;

Therefore, the current needed is 1790.26 A.
Answer:
Part a)

Part b)

Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Explanation:
Part a)
By Guass law we know that



Part b)
Outside the outer cylinder we will again use Guass law



Part d)
As we know that due to induction of charge there will be same charge appear on the inner and outer surface of the cylinder but the sign of the charge must be different
On the inner side of the cylinder there will be negative charge induce on the inner surface and on the outer surface of the cylinder there will be same magnitude charge with positive sign.
Answer:
correct option is d) 7.0 x 10^-7 N
Explanation:
given data
distance = 175 picometers = 1.75 ×
m
to find out
electrical force
solution
we know atomic no of uranium is 92
and charge on electron is = 1.6 ×
C
and electrical force is express as
electrical force =
.............1
put here value we get
electrical force = 
electrical force = 6.921 ×
N
so correct option is d) 7.0 x 10^-7 N
Answer:
arrangement 2
Explanation:
arrangement 1's spring would broke idek
vf ^2 = kx^2/m = 56(0.75)^2 / 2.5 = 12.6
Therefore, v= 3.5 m/s.