Answer:
a An increase in the speed will lower the internal pressure
Explanation:
Bernoulli's fluid formula

where
P = Pressure
ρ = Density of fluid
g = Acceleration due to gravity
h = Height
v = Velocity of fluid
If there is no change in height then we get

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.
Answer: The weight of the air displaced by the balloon is less than the volume of the balloon.
Explanation:
A hot air balloon is a cloth wrap that contains several thousand cubic meters of air inside (a large volume of air). The burner heats the liquid propane to a gaseous state to generate a huge flame, which can reach more than 3 meters, thus heating the air mass inside the balloon. In this way,<u> its density is modified with respect to the air that surrounds it</u>, because the hot air is lighter than the outside air (less dense), causing the balloon to rise and float.
Now, if we know that the density of a body
is directly proportional to its mass
and inversely proportional to its volume
:

We can deduce that <u>by increasing the volume of the body, its density will decrease.</u>
This is proof of <em><u>Archimedes' Principle</u></em>:
<em>A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.</em>
In this case the fluid is the air outside. So, the warm air inside the balloon, being less dense, will weigh less than the outside air and therefore will receive an upward pushing force or thrust that will make the balloon ascend.
Answer: *360 mph*
Explanation:
I am pretty sure that it is 360 mph
3 times 120 = 360
Answer:
Since the maximum thermal efficiency is higher than 55 percent, there can be a power cycle with these reservoir temperature with an efficiency higher than 55 percent.
Explanation:
The maximum thermal efficiency is determined from the given temperature
nth Carnot = 1- TL/TH
Where TL= 17+273= 290k
TH= 627*273= 900K.
nth Carnot = 1- 290/900 = 0.68
0.68*100 = 68 percent
It's Z.
Without any force acting on it an object travels in a straight line.
In order to bend away from a straight line the object needs a force acting on it.
In order to move along a circle, the force on the object points toward the center of the circle. It's called the centripetal force.
Since the object's direction is changing it has acceleration.
The acceleration points toward the center of the circle.