Answer is
9.773m/s^2
-----------------------------------------------------------------------------
Given,
h=8848m
The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.
g′=g(1 − 2h/h)
=9.8(1 - 6400000/17696)
=9.8(1 − 0.00276)
9.8×0.99724
=9.773m/s^2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2
-----------------------------------------------------------------------
hope this helps :)
Polar molecules do have ionic bonds
Answer:
latent heat, also called the heat of vaporization, is the amount of energy necessary to change a liquid to a vapour at constant temperature and pressure. The energy required to melt a solid to a liquid is called the heat of fusion, and the heat of sublimation is the energy
Explanation:
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
Answer: box one is chemical energy and box 2 is absorbed energy
Explanation: