Heya!!
For calculate velocity, lets applicate formula

<u>Δ Being Δ</u>
d = Distance = 3790 m
t = Time = 249 s
v = Velocity = ?
⇒ Let's replace according the formula and clear "v":

⇒ Resolving

Result:
The velocity is <u>15,22 meters per second.</u>
Good Luck!!
Answer:
Relation between initial speed of bullet and height h is given as

Explanation:
As we know that system of block and bullet swings up to height h after collision
So we have

so we have

so speed of the block + bullet just after the impact is given by above equation
Now we also know that there is no force on the system of bullet + block in the direction of motion
So we can use momentum conservation

now we have

It’s D because kinetic energy is the energy of motion
Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
Answer:

Explanation:
The impulse or average force in classical mechanics is the variation in the linear momentum that a physical object experiences in a closed system. It is defined by the following equation:

Where:





Asumming v1=0 and t1=0:
