<h2>
Kinetic energy just before hitting the floor is 324.57 J</h2>
Explanation:
Weight of volleyball player = 650 N
That is
Mass x Acceleration due to gravity = 650
Mass x 9.81 = 650
Mass = 66.26 kg
We also have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Final velocity, v = ?
Displacement, s = 0.5 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 0.5
v = 3.13 m/s
Velocity with which he lands on ground is 3.13 m/s
We have kinetic energy = 0.5 x Mass x Velocity²
Substituting
Kinetic energy = 0.5 x 66.26 x 3.13²
Kinetic energy = 324.57 J
Kinetic energy just before hitting the floor is 324.57 J
Use the kinematic equation: Vf=Vi+at
Then plug;
Vi=14 m/s
a=5 m/s²
t=20 s. Therefore;
Vf=14+(5*20)
Vf=114 m/s.
Answer:
i) 24.5 m/s
ii) 30,656 m
iii) 89,344 m
Explanation:
Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer
i) Los parámetros dados son;
Altura inicial, s = 120 m
El tiempo en caída libre = 2.5 s
De la ecuación de caída libre, tenemos;
v = u + gt
Dónde:
u = Velocidad inicial = 0 m / s
g = Aceleración debida a la gravedad = 9.81 m / s²
t = Tiempo de caída libre = 2.5 s
Por lo tanto;
v = 0 + 9.8 × 2.5 = 24.5 m / s
ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación
s = u · t + 1/2 · g · t²
= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m
iii) La altura restante = 120 - 30.656 = 89.344 m.
The equation for this is very simple you add then you subtract then you get the answer then you divide then it all works out for you