<span>reflection, rotation, translation</span>
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
Complete Question
The complete question is shown on the first uploaded image
Answer:
the value of 
Explanation:
From the question we are told that
The equation is (x + y = 40)
The first value of x is 
The second equation is (0.75x + 1.5y = 40)
So substituting 

=> 
Now substituting y and
into second equation

=> 
So 
Answer:
The options are
A) isochoric.
B) isothermal.
C) adiabatic.
D) isobaric.
The answer is C. Adiabatic
Adiabatic process involves zero loss or gain of heat in a system. This is usually depicted as Q= 0.
An ideal gas being compressed in a well-insulated chamber using a well-insulated piston involves the use of adiabatic process. The insulated chamber and piston helps to prevent heat loss or gain of heat. This is because insulators are poor conductors of heat and electricity.