Hybrid
<u>Hybrid</u> modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas powered.
- The driving wheels of hybrid vehicles receive power from their drivetrains.
- A hybrid car has numerous sources of propulsion.
- There are numerous hybrid configurations.
- A hybrid vehicle might, for instance, get its energy from burning gasoline while alternating between an electric motor and a combustion engine.
- Although they have primarily been employed for rail locomotives, electrical vehicles have a long history of integrating internal combustion and electrical transmission, like in a diesel-electric power-train.
- Because the electric drive transmission directly substitutes the mechanical gearbox rather than serving as an additional source of motive power, a diesel-electric powertrain does not meet the definition of a hybrid.
- Only the electric/ICE hybrid car type was readily accessible on the market as of 2017.
- One type used parallel operation to power both motors at the same time.
- Another ran in series, using one source to supply power solely and the other to supply electricity.
- Either source may act as the main driving force, with the other source serving to strengthen the main.
To learn more about hybrid vehicles visit:
brainly.com/question/14610495
#SPJ4
Answer:
Color, Streak, luster, cleavage and fracture, hardness, crystal shape, and density.
Explanation:
Answer:

Explanation:
When heat energy is supplied to an object, the temperature of the object increases according to the equation:

where
Q is the heat supplied
C is the heat capacity of the object
is the change in temperature
In this problem we have:
is the energy supplied
is the change in temperature of the object
Therefore, the heat capacity of the object is:

Total amount of energy would remain constant according to law of conservation of energy. i.e., 50 Joules
In short, Your Answer would be Option C) <span>50 Joules because as energy converts from one form to another, it cannot be created or destroyed during the conversion.
</span>
Hope this helps!
Acceleration=force/mass=28/(10+4)=2m/s^2
force10kg=ma=10*2
force4kg=ma=(10*2)=20
the4 kg is pushing against the 10kg block
vf=vi+at
-10=20*28/14 * t
t=30/2=15sec
i hope this can help you.