1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
11

Which of these factors best explains why liquid water exists on earth ?

Physics
2 answers:
Crazy boy [7]3 years ago
5 0

Answer: The "right" answer would be something like

"The temperature of the earth is such that permits the existence of liquid water"

Now let's analyze the option that can mean this:

The b option "Earth strong gravity" is related to the mass of the earth, and the mass of the earth is, in some way, what defines the orbit that Earth has around the sun.

So if the orbit of earth was closer to the sun, the liquid water would boil, and if the orbit was further away from the sun, the liquid water would freeze.

Then the option b is the one that best explains why liquid water exists on earth.

Sveta_85 [38]3 years ago
3 0

Answer:

earth strong gravity

Explanation:

The only planet that have water bodies is earth. We know that water is one of the important factors for all living organism. Liquid water exists on the earth's surface is due to the atmospheric pressure. The reason behind this is not completely mentioned.

There are so many hypothesis about it. Out of given options the correct option is earth's strong gravity.

Hence, the correct option is (b) " earth strong gravity ".

You might be interested in
Of the three forces acting on the rock as it slides down the bowl, which (if any) are constant and which are not? explain.
choli [55]

Answer

Hi,

The forces are; weight (gravity), Normal/centripetal force and friction. Force due to gravity is constant where as friction and centripetal are not.

Explanation

Weight is constant, given by the force of gravity on the object. The centripetal force is a function of the angles occurring between the velocity vector and the weight vector that is at right angle with the perpendicular line drawn from the surface. Friction is a function of the centripetal force thus it also varies.

Hope this helps!

6 0
3 years ago
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
A rock from space in Earth's Atmosphere would be considered?
Gnesinka [82]

Answer:

A meteor mate

Explanation:

hope this helps

8 0
3 years ago
Wha is the frequency of a wave having a period equal to 18 seconds?
Rainbow [258]

Answer:

5.5 × 10-2 hertz

Explanation:

The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.

= 0.055 per second          (1 cycle per second = 1 Hertz)

Thus, we can conclude that the frequency of the wave is 5.5 X 10^{-2} hertz.

Hopes this helps, love <3

5 0
3 years ago
Which one of the following statements concerning the Stefan-Boltzmann equation is correct? The equation can be used to calculate
Helen [10]

"The equation can be used to calculate the power absorbed by any surface" statement concerning the Stefan-Boltzmann equation is correct.

Answer: Option A

<u>Explanation:</u>

According to Stefan Boltzmann equation, the power radiated by black body radiation source is directly proportionate to the fourth power of temperature of the source. So the radiation transferred is absorbed by another surface and that absorbed power will also be equal to the fourth power of the temperature. So the equation describes the relation of net radiation loss with the change in temperature from hotter temperature to cooler temperature surface.  

                            P=e \sigma A\left(T^{4}-T_{c}^{4}\right)

So this law is application for calculating power absorbed by any surface.

4 0
3 years ago
Other questions:
  • When scientists first started mapping human genes, they estimated that there were about 2 million genes. By the late 1990s, it w
    14·2 answers
  • A 100 kg person rides in an elevator moving at a constant speed of
    7·1 answer
  • 15m/s is how many Newtons
    15·1 answer
  • Question 1
    8·1 answer
  • What form of energy is light
    12·2 answers
  • Define momentum in term of mass and velocity​
    15·1 answer
  • Queremos diseñar un montacargas que pueda subir con una rapidez de 12 km/h una mas 700 kg hasta 40 m de altura en un minuto. Cal
    7·1 answer
  • A coyote is looking for some food for its young. It spots a pocket mouse near a cactus and starts to track and hunt the mouse fo
    15·2 answers
  • A car that brakes suddenly comes to a screeching halt. Is the sound energy produced in this conversion a useful form of energy?
    15·1 answer
  • A 0.50-kg block attached to an ideal spring with a spring constant of 80 N/m oscillates on a horizontal frictionless surface. Th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!