Considering Conservation of Momentum, the momentum

before and after must remain the same:
so:
before:
Answer:
30hz is the answer for the question
Answer:
Explanation:
ASSUMING that block = sled AND that the rope is parallel to the slope.
The force acting parallel due to the weight is
13.6(9.81)sin35.5 = 77.475 N
The maximum friction force is
(0.45)13.6(9.81)cos35.5 = 48.877 N
If rope tension is T
77.475 - 48.877 < T < 77.475 + 48.877
28.6 N < T < 126 N
28.6 N will occur if the block is on the verge of sliding downhill
126 N will occur if the block is on the verge of sliding uphill
Could be any value between them.
Answer:
The correct option is;
Raymond: I think the skateboarder has the same total energy at all points on the ramp
Explanation:
The total energy, also known as the total mechanical energy, is the sum of the kinetic and potential energies of the skateboarder
Given that the potential energy is the energy gained due to elevation, the maximum potential energy is obtained at the top of the ramp, while the maximum kinetic energy, which is the energy due to motion, is at the bottom of the ramp where the skateboarder moves fastest.
However, by the energy conservation principle, the kinetic energy of he skateboarder comes from the conversion of the potential energy, such that the total energy is the same at any particular point on the ramp.
Distance of lake a is 200 km at 20 degree north of east
distance between lake a and b is 230 km at 30 degree west of north
now the distance between base and lake b is given as

given that




now the total distance is


now the magnitude of the distance is given as


also the direction is given as


<em>so it is 277.4 km at 74.7 degree North of East</em>