( 1.05 x 10¹⁵ km ) x ( 1 LY / 9.5 x 10¹² km ) x ( 1 psc / 3.262 LY ) =
(1.05) / (9.5 x 3.262) x (km · LY · psc) / (km · LY) x (10¹⁵⁻¹²) =
(0.03388) x (psc) x (10³) =
33.88 parsecs
In the question it is already given that the football player is 80 kg.
Then the mass of the football player = 80 kg
Velocity at which the football player is running = 8 m/s
<span>Kinetic Energy = 0.5 • mass • square of velocity
Now we have to put the known data in this equation to find the actual velocity of the footballer.
</span> <span></span>So
Kinetic Energy of the footballer = 0.5 * 80 * (8 * 8)
= 0.5 * 80 * 64
= 2560
So the Kinetic energy of the footballer is 2560 joules
Answer:
S pole and S pole repelling
0.36 J of work is done in stretching the spring from 15 cm to 18 cm.
To find the correct answer, we need to know about the work done to strech a string.
<h3>What is the work required to strech a string?</h3>
- Mathematically, the work done to strech a string is given as 1/2 ×K×x².
- K is the spring constant.
<h3>What will be the spring constant, if 40N force is required to hold a 10 cm to 15 cm streched spring?</h3>
- The force experienced by a streched spring is given as Kx. x is the length of the spring streched from its natural length.
- Then K = Force / x.
- Here x = 15 - 10 = 5 cm = 0.05 m
- K = 40/0.05 = 800N/m.
<h3>What will be the work required to strech that spring from 15 cm to 18 cm?</h3>
- Work done = 1/2×k×x²
- Here x= 18-15=3cm or 0.03 m
- So, W= 1/2×800×0.03² = 0.36 J.
Thus, we can conclude that the work done is 0.36 J.
Learn more about the spring force here:
brainly.com/question/14970750
#SPJ4
The <span>stream's discharge
The volume of water to pass a given point on a stream bank per unit of time, usually expressed in cubic meters of water per second. </span>