Answer:
im pretty sure it is 3.0 K
Explanation:
Answer:
Either B or D. The answer itself is 2.
Explanation:
The equation for the kinetic energy would be 1/2*mv^2.
When m is doubled, we can plug in 1 and 2 to compare our answers.
Plugging in 1 for mass would give us the answer 1/2*v^2.
Plugging in 2 for mass would give us v^2. This means that the velocity was multiplied by 2, meaning that the answer is it is multiplied by 2.
I am not sure which answer is correct since there seems to be two answer choices with 2 in it, but the answer is either B or D (I will call it ABCD because I do not want to cause confusion by saying 2 multiple times).
Current = charge/time = (2 c)/(0.00024 sec)= 8,333 Amps !
Answer:
(a) They must have same direction
(b) It is not necessary for them to have same magnitudes
Explanation:
(a)
Momentum is a vector quantity. It is the product of mass (scalar) and velocity (vector). Thus, if the direction of velocity is changed, then as a result the direction of momentum will also change or its magnitude or component in the same direction will change. Hence, for the two objects to have same momentum, the directions of their velocities must also be the same.
(b)
Since, the momentum is product of velocity and mass. It is possible that two bodies of different masses with different velocities might have same momentum, provided the direction of their velocities is same.
For example, take a body of mass 4 kg moving with speed 5 m/s. It will have a momentum of 20 N.s. Now, consider another body of mass 2 kg, moving with speed 10 m/s. It will also have a momentum of 20 N.s.
Thus, it is not necessary for two objects to have same magnitude of velocity to have same momentum.